

Form:	Form Number	EXC-01-02-02A
Comme Coullabera	Issue Number and Date	2/3/24/2022/2963
Course Syllabus	e Synabus Issue Number and Date	
	Number and Date of Revision or Modification	
	Deans Council Approval Decision Number	2/3/24/2023
	The Date of the Deans Council Approval Decision	23/01/2023
	Number of Pages	06

1	Course Title	Molecular Structure and Mechanisms of Organic				
1.	Course Thie	Reactions				
2.	Course Number	0303731				
2	Credit Hours (Theory, Practical)	3				
5.	Contact Hours (Theory, Practical)	3				
4.	Prerequisites/ Corequisites	-				
5.	Program Title	MsC				
6.	Program Code	0303				
7.	School/ Center	School of Science				
8.	Department	Chemistry				
9.	Course Level	Master				
10.	Year of Study and Semester (s)	Second Semester 2024-2025				
11	Other Department(s) Involved in					
11.	Teaching the Course					
12.	Main Learning Language					
13.	Learning Types	•Face to face learning				
14.	Online Platforms(s)	Moodle Microsoft Teams				
15.	Issuing Date					
16.	Revision Date					

17. Course Coordinator:

Name: Prof. Dr. Jalal Zahra

Office number: 300

Contact hours:

Phone number: 22163

Email: zahra@ju.edu.jo

18. Other Instructors:

Name:
Office number:
Phone number:
Email:
Contact hours:
Name:
Office number:
Phone number:
Email:
Contact hours:

19. Course Description:

As stated in the approved study plan.

An advanced study of the structures of organic compounds and organic reactions mechanisms, chemical bonds on the basis of molecular orbital theory, aromaticity, methods of study of organic mechanisms, mechanisms of selected reactions, concerted reactions, photochemical reactions, of reaction intermediates reactions.

- 20. Program Student Outcomes (SO's): (To be used in designing the matrix linking the intended learning outcomes of the course with the intended learning outcomes of the program)
 - SO1. Demonstrate comprehensive knowledge and understanding of chemistry topics, achieving expertise in foundational research principles.
 - SO2. Develop independent research skills to solve complex problems, focusing on analytical and critical thinking.
 - SO3. Improve communication of scientific knowledge through structured reports, presentations, and discussions.
 - SO4. Engage in activities that enhance practical scientific skills and improve professional expertise.
 - SO5. Maintain ethical standards in research.
- **21. Course Intended Learning Outcomes (CLO's):** (Upon completion of the course, the student will be able to achieve the following intended learning outcomes)
 - 1. Define, describe, and analyze methods for investigating reaction mechanisms.
 - 2. Understand and Apply Transition State Theory and Linear Free Energy Relationships.

- 3. Explain polar reactions under acidic and basic conditions.
- 4. Predict and analyze pericyclic reactions.
- 5. Understand and analyze rearrangement mechanisms.
- 6. Explain free radical reaction mechanisms.

Course	The learning levels to be achieved										
CLOs	Remembering	Understanding	Applying	Analysing	evaluating	Creating					
1		X	X	X	X	X					
2		X	X	X	X	X					
3		X	X	X	X	X					
4		X	X	X	X	X					
5		Х	Х	х	х	Х					
6		Х	Х	Х	х	Х					

22. The matrix linking the intended learning outcomes of the course with the intended learning outcomes of the program:

Program SO's	SO (1)	SO (2)	SO (3)	SO (4)	SO (5)
Course CLO's					
CLO (1)	•	•	•		
CLO (2)	•	•	•		
CLO (3)	•	•	•		
CLO (4)	•	•	•		
CLO (5)	•	•	•		
CLO (6)	•	•	•		

23. Topic Outline and Schedule:

Week	Lecture	Topic	CLO/s Linked to the Topic	Learning Types Face to Face (FF) Blended (BL) Fully Online (FO)	Platform Used	Synchronous (S) Asynchronous (A)	Evaluation Methods	Learning Resources
1	1.1	Elementary and Stepwise Reactions	CLO (1)	FF	on cam pus	S		textbook
1	1.2	Bond Making and Bond Breaking, Molecularity Formulating Mechanisms	CLO (1)	FF	on cam pus	S		textbook
2	2.1	Why Study Mechanisms?	CLO (1)	FF	on cam pus	S		textbook

الجامعة الاردنية

			CLO		on	S		textbook
	2.2		(1)		cam	2		tente e en
		Rates and Rate Constants	(1)	FF	pus			
		General relationship between	CLO	FF	on	S		textbook
	3.1	thermodynamic stability and	(2)		cam			
2		reactivity			pus			
3			CLO	FF	on	S		textbook
	3.2		(2)		cam			
		Kinetic Isotope Effects			pus			
			CLO	FF	on	S		textbook
	4.1		(2)		cam			
4		Early and Late Transition States			pus			
			CLO	FF	on	S		textbook
	4.2	Hammond Postulate, Solvent	(2)		cam			
		Effects			pus			
		Structure-Reactivity	CLO	FF	on	S		textbook
	5.1	Relationships The Hammett	(2)		cam			
5		relationship			pus	~		
5		The Hammett substituent	CLO	FF	on	S		textbook
	5.2	constant σ . The Hammett	(2)		cam			
		reaction constant ρ			pus			
			CLO	FF	on	S		textbook
	6.1	Using the Hammett ρ values to	(2)		cam		midte	
		uncover mechanisms			pus		rm	
6		Polar Reactions under Basic	CLO	FF	on	S		textbook
	62	Conditions Substitution and	(3)		cam			
	0.2	Elimination at C(sp3)–X _			pus			
		Bonds, Part I						
			CLO	FF	on	S		textbook
	7.1	Addition of Nucleophiles to	(3)		cam			
7		Electrophilic Bonds			pus	~		
	7.0			FF	on	S		textbook
	7.2	Substitution at C(sp2)–X			cam			
		Bonds		- FF	pus	9		1 .1
	0 1			FF	on	8		textbook
	8.1	Substitution and Elimination at $C(m^2)$ X = Den 1a Dent H			cam			
		C(sp3)-A Bonds, Part II			pus	C		4 arr41 1
8	0 2				on	3		textbook
	0.2	Dess Dramated Desiman series						
		base-promoted Kearrangements			pus			
					on			textbook
9	9.1				cam			
		Two Multistep Reactions			pus			

				1	~		
		Polar Reactions Under Acidic	FF	on	S		textbook
	9.2	Conditions		cam			
		carbocations		pus			
	10.		FF	on	S		textbook
	1	Substitution andElimination		cam			
	1	Reactions at C(sp3)–X		pus			
10	10		FF	on	S		textbook
	10.	Electrophilic Addition to		cam			
	2	Nucleophilic C=C Bonds		pus			
	11		FF	on	S		textbook
	11.	Substitution at Nucleophilic C=		cam			
1.1	1	C Bonds		pus			
11	11	Nucleophilic Addition to and	FF	on	S		textbook
	11.	Substitution at		cam			
	2	Electrophilic Bonds		pus		quiz	
	1.0		FF	on	S	1	textbook
	12.	Pericyclic Reactions	11	cam	5		ie Albook
	1	Electrocyclic Reactions		pus			
12			FF	on	S		textbook
	12. 2		11	cam	5		ICX1000K
		Cycloadditions		nus			
-			FF	on	S		textbook
	13. 1		1.1.	cam	5		ICATOOOK
		Sigmatropic Rearrangements		bus			
13			БС	pus	C		taythool
	13.		ГГ	011	3		lexibook
	2	Ena Departions		Calli			
		Ene Reactions		pus	C		4 (1 1
	14.	Ence De l'est De stisses	FF	on	5		textbook
	1	Free-Radical Reactions		cam			
14		Free Radicals		pus	~		
	14.		FF	on	S		textbook
	2			cam			
		Chain Free-Radical Reactions		pus	~		
	15.		FF	on	S		textbook
	1	Nonchain Free-Radical		cam			
15	1	Reactions		pus			
10	15		FF	on	S		textbook
	2			cam			
	4	Miscellaneous Radical Reactions		pus			
				on			
16				cam		Final	
				pus		Exam	

24. Evaluation Methods:

Opportunities to demonstrate achievement of the CLOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	CLO/s Linked to the Evaluation activity	Period (Week)	Platform
midterm	30		CLO (1), CLO (2)	6	on campus
Quiz	30		CLO (3)	11	on campus
final	40		CLO (1), CLO (2) CLO (3), CLO (4) CLO (5), CLO (6)		on campus

25. Course Requirements:

(e.g.: students should have a computer, internet connection, webcam, account on a specific software/platform...etc.):

26. Course Policies:

- A- Attendance policies:
- B- Absences from exams and submitting assignments on time:
- C- Health and safety procedures:
- D- Honesty policy regarding cheating, plagiarism, misbehavior:
- E- Grading policy:
- F- Available university services that support achievement in the course:

27. References:

- (1) The art of writing reasonable organic reaction mechanisms, R.B.Grossman, 2nd Ed., 2003.
- (2) Mechanisms in organic reactions, R. Jackson, 2004.
- (3) Organic mechanisms, R. Bruckner, English Ed., 2010.
- (4) A guidebook to mechanism in organic chemistry, P. Sykes, 6th Ed., 1985.
- (5) Advanced organic chemistry, part A, Carey and Sundberg, 5th Ed., 2007.
- (6) Organic Chemistry, Jonathan Clayden, ick Greeves and Stuart Warren. 2nd edition, 2012

28. Additional information:

Name of the Instructor or the Course Coordinator:	Signature:	Date:
Dr. Jalal Zahra, Prof.		•••••
The Head of Graduate Studies Committee/ Department Chemistry	Signature:	Date:
Dr. Murad AlDamen, Prof.	••••••	•••••
The Head of Department of Chemistry Dr. Murad AlDamen, Prof.	Signature:	Date:
	••••••	•••••
Vice Dean for Graduate Studies and Scientific Research / School of Science	Signature:	Date:
Dr. Kamal Sweidan, Prof.	•••••	•••••
The Dean of School of Science Dr. Mahmoud I. Jaghoub, Prof.	Signature:	Date:
	•••••	•••••